Postnatal Immune Activation

:::: MENU ::::Vaccine Papers

An Objective Look at Vaccine Dangers

NOV 12, 2015

Part 4: Postnatal Immune Activation

As many vaccine advocates have argued, there are some obvious differences between the maternal immune activation (MIA) discussed in previous articles, and vaccines:
1) Maternal immune activation involves the maternal immune system. Immune activation is stimulated in the mother, not the fetus. It cannot be assumed that MIA is the same as causing immune activation in the fetus.

2) The fetus is at an earlier stage of development than an infant. It cannot be assumed that an infant can be similarly damaged.

3) The immune activation experiments do not use vaccines. They use infections, lipopolysaccharide (LPS) or poly-IC to stimulate the immune system. It cannot be assumed that a vaccine will have the same effects as LPS or Poly-IC. For example, these substances typically create a stronger immune activation than a vaccine.
Vaccine advocates are mostly unaware of the growing literature on immune activation-mediated brain damage. But when they do become aware, they argue strongly that the science of immune activation is not relevant to vaccines for the reasons above.
This article explains why these objections are contradicted by the scientific evidence. Vaccines given to an infant can cause brain damage by the same mechanisms proven to occur in maternal immune activation experiments.
Specifically, the science establishes the following:

1) Maternal immune activation (MIA) causes a cytokine surge in the fetal brain. Its the cytokine surge that causes brain damage.

2) The brain can be damaged by immune activation postnatally, with no maternal involvement.

3) Brain development is a continuous process through gestation, birth, and infancy. The brain grows enormously during infancy, by processes that are proven to be damaged by cytokines.

4) Vaccine adverse reactions stimulate high cytokine production. Normal vaccine response does not cause brain damage. It’s the unusually severe vaccine reactions that cause brain damage and autism.
In combination, these well-established facts prove that vaccines will cause brain damage, and autism specifically, in infants that suffer adverse vaccine reactions.
1) The Fetal Brain During MIA

It is proven beyond any doubt that activation of the maternal immune system (during gestation) causes autism and other brain damage in the fetus. But what is the mechanism for this damage? Fortunately, there has been a lot of good research exploring this question.
The fetal brain is damaged by abnormal levels of cytokines in the brain. In some experiments, the cytokines come from the mother, and in others, the cytokines are produced by the fetal brain itself. The source of the cytokines seems to depend on the timing and number of immune activation events. In either case, however, it’s the unusually high cytokine concentration that causes the damage.
Part 2 established that the cytokine interleukin-6 (IL-6) is proven to cause autism in animal studies.
Oskvig et al. describes a maternal immune activation study by the NIH in which cytokine levels were measured in maternal serum (blood), amniotic fluid and fetal brains. The measurements were performed 4 and 24 hours after immune activation by lipopolysaccharide (LPS). Results are shown below. In this experiment, the fetal brain did not produce the cytokines (as determined by measurements of messenger-RNA expression). Instead, it appeared that cytokines produced by the mother traveled into the fetal brain.
Full paper (Oskvig): Maternal immune activation by LPS selectively alters specific gene expression profiles 
Oskvig-measurements
Above: Maternal immune activation (MIA) causes a cytokine surge in the fetal brain. In this experiment (Oskvig et al.), cytokines appear to travel from the mother into the fetal brain. LPS=lipopolysaccharide, an immune system activator. 
Other MIA experiments using slightly different conditions (using either LPS or other immune activators) such as Ghiani et al. find that maternal immune activation does cause cytokine production within the fetal brain.

Ghiani et al state:
“Enhanced microglia activation, reactive astroglia and increased expression of pro-inflammatory cytokines were detected in the foetal brain…”

AND

“These data appear to indicate that an extended foetal response was induced, as maternal levels of reactive cytokines decreased rapidly, while foetal levels remained elevated well after exposure to LPS.” 
Full paper (Ghiani): Early effects of lipopolysaccharide induced inflammation on foetal brain development in rat
This is clear evidence of immune activation in the fetal brain. In Ghiani et al, the fetal brain is producing cytokines.
Why do Oskvig and Ghiani report contradictory results regarding cytokine production in the fetal brain? Oskvig describes two possibilities:
“Microglia populate the embryonic brain during a surge of infiltration from external sources such as the yolk sac at about the time of the LPS injection in our study (Rigato et al., 2011). It is possible that they are not mature enough to respond to an immune challenge by making more cytokines of their own. Indeed, in preliminary studies, using CX3CR1-GFP heterozygous reporter mice, we find no evidence of microglial activation after maternal LPS injection given at the equivalent gestational age of day 13 (unpublished data).
A recent report by Ghiani et al. (2011) showed that following maternal LPS administered twice, on gestational days 15 and 16 in rats, there was evidence of activated microglia and astrocytes in fetal cortex two days later. In addition, both mRNA and protein levels of several inflammatory cytokines were elevated in the time window of 4–72 h following the LPS. A possible explanation for a fetal brain inflammatory response in that paradigm, not seen in our paradigm, may be attributable to the double injection procedure used in that study. Nevertheless, we emphasize that in our paradigm, despite the lack of evidence of gross changes in brain development and inflammation, the offspring displayed deficits in social and exploration behaviors as adults, indicating that the subtle changes occurring after a single maternal LPS injection are sufficient to cause altered behavior symptomatic of psychiatric disease.”
These details are discussed in anticipation of the objection that brain damage occurs only if the maternal immune system is involved, which is not the case. Vaccine advocates often assert that maternal immune activation is fundamentally different from immune activation during infancy (i.e., postnatally). However, the two conditions set forth above for immune activation in the brain (mature microglia, and multiple immune activation events) are both present in infants exposed to vaccines according to the CDC vaccine schedule. Infants have mature microglia capable of producing cytokines, and vaccines are given in numerous exposures (typically at least 5 in the first 18 months: at birth, 2, 4, 6, 12 and 15 months).
The Ghiani et al. experiment may stimulate cytokine production in the fetal brain due to microglial priming, since two immune activation events were used. Microglial priming is a well known phenomenon in which microglia become increasingly sensitive and reactive to immune activation after repeated immune activation events. Activated microglia produce cytokines.
Both Oskvig and Ghiani found clear evidence of brain damage and pathological behavioral changes. The developing brain is damaged by cytokines whether they come from the mother, or are produced within the fetal brain (i.e., by microglia). In other words, the source of the cytokines is irrelevant. And the postnatal brain of any animal can produce cytokines.
2) Look Mom, I Damaged It All By Myself!

Part 2 (on IL-6 and autism) described the important Wei et al. study in which mice exposed to IL-6 postnatally suffered autistic brain damage. This study was done by injecting a genetically engineered virus (containing the gene for IL-6) into the mouse brain. The gene caused chronic exposure of the brain to IL-6. The result was autistic behavior and physiological damage indicative of autism.
This result is important, and it is relevant to humans because the action of IL-6 is conserved across species and because the development of human and mouse brain are governed by the same basic principles. However, at birth the human brain is more fully developed than the mouse brain, and therefore the human brain is arguably less sensitive to immune activation in the postnatal period.
This leads to an important question: can a more fully developed human brain suffer damage from immune activation? The answer is an unequivocal YES. There are numerous case reports of brain inflammation (“encephalitis”) causing autism in children at older ages. Some of the children recover, and some don’t. Here are 4 such case reports/case series and a review of the subject:
Case Series, DeLong 1981: This report describes 3 previously-normal children, ages 5(F), 7.5(M) and 11(F) that developed autism due to brain inflammation from an infectious illness. The authors state:
“We report three cases in which striking autistic features developed in previously normal children in the course of an acute encephalopathic illness…”

AND

“These three children each demonstrated a full-blown autistic syndrome in the course of an acute encephalopathic illness…The cases are presented as examples of an acquired and reversible autistic syndrome in childhood, affording some insight into the neurologic substrate of that syndrome.”

AND

“…the behavioral syndrome was acquired at a clearly definable time, in the context of an acute encephalopathic illness…”
Full paper: Acquired reversible autistic syndrome in acute encephalopathic illness in children
Case Report, Marques, 2013: This report describes a previously healthy 32-month old girl that suffered a viral infection of the nervous system. The child experienced “marked developmental regression, autistic features, persistent stereotypes and aphasia” (aphasia=loss of speech).
The authors described this case as “…encephalitis leading to developmental regression with autism spectrum disorder and correlating these 2 distinct entities.” (encephalitis = brain inflammation)
The authors rule out inborn metabolic disorders as a cause (this argument applies to the other case reports):
“Our patient was previously healthy, with adequate psychomotor development until this infectious episode. Additionally, newborn screening and metabolic tests performed on the admission were negative (normal values for ammonia and lactate) and MRI images do not suggest metabolic disorders. Finally and most importantly, she had a favorable outcome with improvement in all skills and development quotient enhancement. These features do not support an inborn error of metabolism, which are characteristically progressive and lead to severe mental retardation.”
Full Paper: Autism Spectrum Disorder Secondary to Enterovirus Encephalitis
Case Report, Ghaziuddin, 2002: This report describes a previously healthy 11 year old boy that developed illness with fever, seizure and brain inflammation. In the following months, the child developed autism, and never fully recovered. The authors state:
“On the DSM-IV symptom checklist for autistic disorder, he met all the criteria for autism except the onset criterion because he did not have a history of any symptoms before three years of age.”

AND

The authors state that this case “… provides further evidence that autistic symptoms can sometimes emerge after the age of three years following an external event such as an infection.”
Full Paper: Austistic Symptoms Following Herpes Encephalitis
Case Report: Gillberg, 1986: This report describes a previously healthy 14 year old girl that developed illness with fever, seizure and brain inflammation. In the following 70 days, she developed all the symptoms of autism, including echolalia, loss of speech, hand-flapping and other self-stimulating behavior. She never recovered. Gillberg states:
“I will describe the case of a 14-year-old-girl who developed all the classical symptoms of autism over a 70-day period after the onset of convulsions in herpes simplex encephalitis (presumptive diagnosis on the basis of clinical, neurochemical, and neurophysiological tests). Only the age criterion is not met, since she was totally psychiatrically healthy up to her 14th year of life.”

AND

“Severe autistic features-including gaze aversion, abnormal reactions to sound, delayed and immediate echolalia after initial muteness, typical hand-flapping stereotypies, and the acquisition of a set of routines and insistence on sameness that make everyday life totally restricted-developed over a 3-month period after the onset of encephalitis and still remain.”
Full Paper: Onset at age 14 of a typical autistic syndrome: A case report
Review, Libbey, 2005: This review describes the prior case reports of infection causing autism. At the time this review was written in 2005, immune activation was increasingly suspected as a cause of autism. The authors make the obvious connection between cytokines and infection:
“An acute infection could lead to transient levels of cytokines without viral persistence, or infection could instigate an autoimmune process resulting in chronically elevated cytokine production….Depending on the location of immune activation, cytokines could be produced directly in the brain or gain access to the CNS [central nervous system] by crossing an immature blood-brain barrier (BBB).”
Full Paper: Autistic disorder and viral infections
10 years of intensive research since the Libbery paper has firmly established that cytokines are a cause of autism (and likely the primary or only cause). It is no longer debatable whether cytokines cause autism.
The above case reports demonstrate that the human brain can be damaged by immune activation and cytokine surges long after the fetal stage. The human brain remains vulnerable for many years, though the evidence suggests that sensitivity declines with age. The argument by vaccine advocates that the human brain is vulnerable to immune activation only while in the womb-i.e., that maternal involvement is necessary-is contradicted by the above case reprts. The human brain can suffer autistic damage without any maternal involvement whatsoever.
In order for vaccine advocates to assert that the infant brain is not vulnerable to immune activation, they must argue that the age range of about 0-3 years is especially privileged and uniquely resistant to immune activation. This idea is preposterous, and is contradicted by even more evidence in argument #3 below on brain development processes.
More Evidence of Postnatal Damage

There is even more evidence from animal experiments that postnatal immune activation causes autism brain damage. For example, a recent (2015) maternal immune activation study by Coiro et al demonstrated that ongoing immune activation in the postnatal period accounted for most or all of the damage. This was demonstrated by giving MIA-exposed infant mice an anti-inflammatory drug (ibudilast) postnatally. Ibudilast is known to reduce inflammation in the brain. The ibudilast treatment prevented autism damage. The authors state:
“…we found that postnatal treatment with an anti-inflammatory drug can prevent the dendritic spine loss as well as the increased marble burying in MIA [MIA=maternal immune activation] offspring. We suggest that an altered inflammatory state in the developing brain of MIA offspring affects synaptic development and behavior.”

AND

“These data suggest that increased inflammatory state during early postnatal weeks is responsible for altered synaptic connectivity and impaired behavior and that early anti-inflammatory treatment can have an ameliorating effect on both synapses and behavior.”
Full paper (Coiro): Impaired synaptic development in a maternal immune activation mouse model of neurodevelopmental disorders
Select experimental results illustrating the effect of ibudilast are shown below.
Coiro-marble-burying-spines
Above: The anti-inflammatory drug ibudilast given postnatally prevented the behavioral changes and synapse damage caused by MIA. Page is from Ghiani et al.
However, the postnatal time period in mice does not necessarily match with the postnatal period in humans.
3) Human Brain Development During Vaccination

While there are many similarities between human and animal and mouse brain development, there are important differences in timing. Brain development processes are very similar in humans and mice, but they occur in different sequences and at different times relative to other developmental events. For example, the human brain is more fully developed at birth than the mouse or rat brain; 7 day old rats are considered to be comparable in brain development to a newborn human brain. These issues are complicated and so will not be covered here. See this paper by Semple et al. if you are interested (warning: may cause drowsiness).
Full paper (Semple): Brain Development in Rodents and Humans: Identifying Benchmarks of Maturation and Vulnerability to Injury Across Species.
A logical way to try to determine if the human brain is sensitive to immune activation postnatally is to consider the specific development processes happening. Are the development processes occurring in the postnatal human brain sensitive to immune activation and disruption by cytokines? The scientific evidence shows that some developmental processes occurring in the human brain postnatally-when vaccines are administered-are indeed disrupted by immune activation.
Fundamental brain development processes include:

Neurogenesis: The birth of new neurons. Neurons carry information in the brain. Most neurogenesis occurs early in gestation.

Gliogenesis: The birth of new glial cells. Glia include immune system cells of the brain (microglia).

Synaptogenesis/synapse formation: The formation of synapse connections between neurons.

Synapse pruning: The elimination of unneeded synapses. Synapses are greatly overproduced early in life, and then slowly eliminated throughout childhood.

Myelination: The formation of the myelin sheath around neurons. The myelin greatly increases the speed of electrical pulses.

Migration: The movement of neurons and other brain cells toward their final positions.

Neural Adhesion: The formation of chemical-mechanical attachments between neurons and glial cells. These attachments hold the cells in place. Adhesion occurs after they migrate to their proper locations, of course.
Wei et al. demonstrated that cultured infant mouse neurons suffer defects in adhesion, migration and synaptic formation when exposed to IL-6. Specifically, synapse formation is altered to produce an excess of excitatory synapses. This is expected in autism, since human autistics show many signs of excessive neuronal excitation (lack of pre-pulse inhibition, sensitivity to lights and sounds, stimming etc). Wei et al state:
“…our in vitro studies showed that increased IL-6 stimulates granule cell synapse formation, particularly enhanced excitatory synapse formation, while it had little effect on inhibitory synapses.”

AND

“These findings suggest that the elevated IL-6 in the autistic brain could cause an imbalance of neuronal circuits through its effects on neural cell adhesion/migration and synapse formation, and contribute to the development of autism.”
It is emphasized here that exposure of the brain to IL-6 during synaptic formation creates an excess of excitatory synapses.
Full Paper (Wei): IL-6 is Increased in the Cerebellum of Autistic Brain and Alters Neural Cell Adhesion, Migration and Synaptic Formation
The sequences and approximate time periods for brain development processes in human brain are mostly known. Below is a chart illustrating the timing of these processes and vaccination. Unfortunately, the chart does not show adhesion or migration. Migration is mostly complete before birth, and continues at a much slower rate postnatally. I have been unable to find reliable literature on the time period of neural adhesion in humans. It appears that the time course of adhesion in human brain development is not yet known. Since adhesion occurs after migration (and in association with synapse formation) and migration continues postnatally, it seems that adhesion must occur postnatally as well.
brain-dev-timeline-text
Above: Vaccination occurs during intense synapse formation in the human brain. Synapse formation is disrupted by inflammation, which is caused by vaccine adverse reactions. Image adapted from Semple et al.
The human brain experiences an intense burst of synapse formation immediately after birth which continues for over a year. The literature on the subject describes synaptic formation as “exuberant”. For example, a 2010 review on brain development by Stiles et al states:
“…studies of both monkeys and humans have documented widespread exuberant production of connections throughout all brain regions in the early postnatal period.”
Full Paper (Stiles): The Basics of Brain Development
The first high-quality measurements of synapse formation in human brain were by Huttenlocher et al in 1997. The most important data from this study is provided below. It clearly shows a dramatic increase in synapse density in the first year of life. Consider that the brain volume is also increasing during this time, so the increase in the total number of synapses is even greater than the increase in density. Human brain volume increases by about 100% in the first year. Synapse formation in the first year of life is truly “exuberant”.
Synapse-density2
Above: Synapse formation is intense during the first year after birth, when vaccines are administered. Synapse formation is disrupted by inflammation, which is caused by vaccine adverse reactions. Image adapted from Huttenlocher et al.
Full Paper (Huttenlocher): Regional Differences in Synaptogenesis in Human Cerebral Cortex
Vaccines are administered during intense synapse formation. If vaccines induce IL-6 during this time, the result will be an excess of excitatory synapses and disturbances of neuronal migration and adhesion (to the extent they are occurring). This will cause autism brain damage and behavior.

UPDATE: Adjuvant Transport Gets Complicated

Part 4: Postnatal Immune Activation

Gadad et al. 2015 PNAS Journal

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s